Half-Life Practice Problems

To find half-lives that have passes	To find remaining amount
$n = \frac{P}{t}$	If you have the # of $t_{1/2}$ $r = i(.5)^n$ If you DON'T have the # of $t_{1/2}$ $r = i(.5)^n$
To find one half-life	Total time passed
1 = P	p = nt
Symbols used	
i= initial amount	
r= remaining amount	
t _{1/2} = time of one half life	
p=time passed n= # of half lives passed	

Solve for the problems. Be sure to identify each piece of information.

1. The half-life of cesium-137 is 30.2 years. If the initial mass of a sample of cesium-137 is 1.00 kg, how much will remain after 151 years?

$$t_{1/2} = n = \frac{151 \text{ yrs}}{30.2 \text{ yrs}} = 5$$

p=

 $r = i(.5)^n = 1.00 \text{ kg}(.5)^5 = .03125 \text{ kg} = \frac{1.0313 \text{ kg}}{1.00313 \text{ kg}}$

2. Give that the half-life of carbon-14 is 5730 years, consider a sample of fossilized wood that, when alive, would have contained 24 g of carbon-14. It now contains 1.5 g of carbon-14. How old is the sample?

3. A 64-g sample of germanium-66 is left undisturbed for 12.5 hours. At the end of that period, only 2.0 g remain. What is the half-life of this material?

of matiperiod, only 2.5 g to start
$$t_{1/2} = 64g \rightarrow 32g \rightarrow 16g \rightarrow 8g \rightarrow 4g \rightarrow 2g$$

i=

p=

 $n = 5$
 $p = 12.5 \text{ hrs}$
 $t = \frac{p}{n} = \frac{12.5 \text{ hrs}}{5} = \frac{2.5 \text{ hrs}}{2.5 \text{ hrs}}$

4. With a half-life of 28.8 years, how long will it take for 1 g of strontium-90 to decay 125 mg?

1000 a 3500 g 3500 g 3125 g

$$1000g \rightarrow 500g \rightarrow 250g \rightarrow 125g$$
 $n=3$
 $p=nt=3(28.8gg)=86.4 grs$

5. Cobalt-60 has a half-life of 5.3 years. If a pellet that has been in storage for 26.5 years contains 14.5 g of cobalt-60, how much of this radioisotope was present when the pellet was put into storage?

then the pellet was put into storage?

$$n = \frac{26.5 \, \text{g/s}}{5.3 \, \text{g/rs}} = 5$$
 $r = i (.5)^n = i = \frac{14.5 \, \text{g}}{(.5)^n} = \frac{14.5 \, \text{g}}{(.5)$

6. A 1.000-kg block of phosphorus-32, which has a half-life of 14.3 days, is stored for 100.1 days. At the end of this period, how much phosphorus-32 remains?

$$n = \frac{P}{t} = \frac{100.1 \text{ days}}{14.3 \text{ days}} = 7$$

$$r = i(.5)^n = 1.000 \text{ kg}(.5)^7 = .0078/25 \text{ kg} = .0078/kg} = 7.81 \text{ g}$$

7. A sample of air from a basement is collected to test for the presence of radon-222, which has a half-life of 3.8 days. However, delays prevent the sample from being tested until 7.6 days have passed. Measurements indicate the presence of 6.5 μg of radon-222. How much radon-222 was present in the sample when it was initially collected?

$$n = \frac{P}{t} = \frac{7.6}{3.8} = 2$$

$$i = \frac{\Gamma}{(.5)^n} = \frac{6.5 \, \text{mg}}{(.5)^2} = 26 \, \text{mg}$$

8. The half-life of sodium-25 is 1.0 minute. Starting with 1 kg of this isotope, how much will remain after half an hour?

$$p=30 \text{ min}, t=1 \text{ min} =) n=30$$

$$r=i(.5)^n=1 \text{ kg}(.5)^{30}=9.31 \times 10^{-10} \text{ kg}=[.931 \text{ yg}]$$

9. What is the half-life of polonium-214 if, after 820 seconds, a 1.0-g sample decays to 31.25 mg?

to 31.25 mg?
1.0g = 1000 mg
$$\rightarrow$$
 500 mg \rightarrow 250 mg \rightarrow 125 mg \rightarrow 62.5 mg \rightarrow 31.25 mg
 $n = f \Rightarrow t = f = \frac{820 \text{ sec.}}{5} = \frac{164 \text{ sec}}{164 \text{ sec}}$