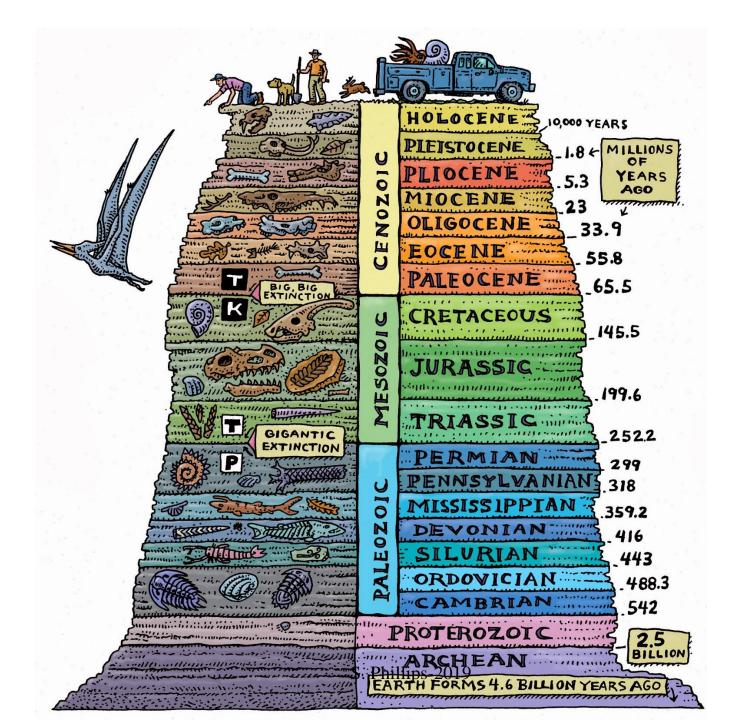
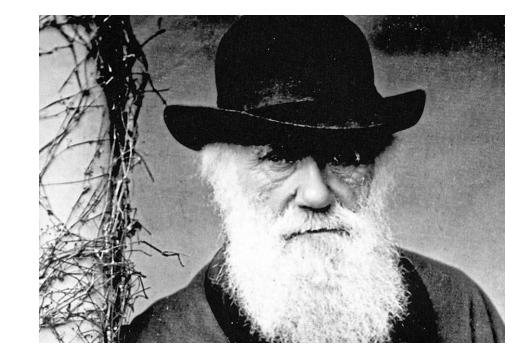
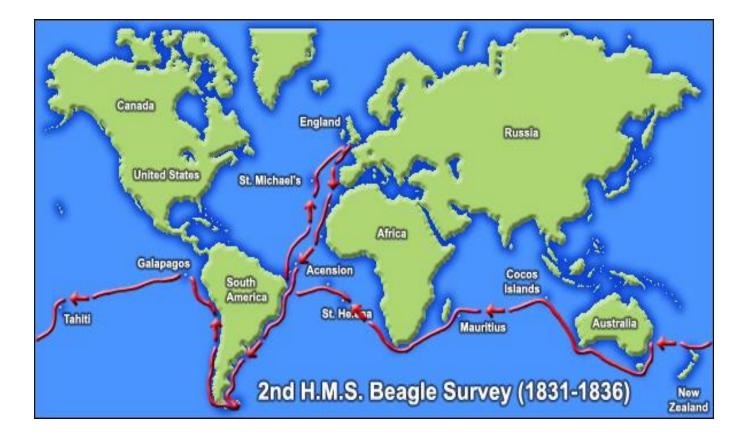
Magnet Biology: Unit 6 1) Concepts of Evolution 2) Classification of Organisms

Mader Text: Evolution: Ch 17-19 Classification: Ch 20 (with brief parts from Ch 21-23 Online Text: OpenStax Part 1-EVOLUTION Basic Vocabulary


- Natural Selection-a population of organisms can change over generations if individuals having certain heritable traits leave more offspring than others
- Adaptation- trait shaped by natural selection that increases an organism's reproductive success ("fitness"). Ex- camouflage, mimicry
- Evolution- change in the genetic composition of a population over time_{S. Phillips-2019}

- Older layers of sedimentary rock (the layers on the bottom) contain fossil species very dissimilar from modern
- Each layer (stratum) is characterized by a unique group of fossil species
- As you move upward through the layers, you find species more and more similar to modern life


Based on paleontology, Lamarck proposed a theory of evolution


- Based on 2 mechanisms (1809)
 - Use and disuse: the idea that parts used the most grow stronger; the parts that don't get used deteriorate
 - Inheritance of acquired characteristics: the modification that an organism acquires during its lifetime can be passed along to its offspring
 - Helped set stage for Darwin by proposing that species evolve as a result of interaction with environment S. Phillips-2019

- Born in England, he had a consuming interest in nature that his dad did not like
- His dad sent him to medical school (at 16). Charles was bored and left
- He then enrolled at Christ College at Cambridge with the intent to become a clergyman
- He was invited along on a voyage to chart the South American coastline on board the HMS Beagle that lasted 5 years
 S. Phillips-2019

The Origin of Species (1859) developed 2 main points

- Descent with modification
 - The history of life is like a tree, with multiple branching and re-branching from a common trunk all the way to the tips of it youngest twigs; most branches are dead ends
- Natural selection and adaptation
 - The concept of natural election is based on 5 observations made by Darwin and can be summarized in 3 inferences made from those observations

Natural Selection

- Obs. 1: all species have the reproductive potential for the population size to grow exponentially
- Obs. 2: Populations do not tend to grow exponentially, but tend to remain stable in size
- Obs. 3: Environmental resources are limited

- Based on those 3 observations, the following inference was made:
- Inference #1: Production of more individuals than the environment can support leads to a struggle for existence among individuals of a population, with only a fraction of offspring surviving

Natural Selection

- Obs. 4: Individuals of a population vary phenotypically; no 2 are exactly alike
- Obs. 5: Much of this variation is heritable
- **Inference #2**: Those individuals whose heritable traits best fit them for the environment are likely to leave more offspring than less fit individuals
- **Inference#3**: This differential reproductive success will lead to a gradual change in a population

Summary of Darwin's ideas

- Natural selection is differential success in reproduction
- It occurs through an interaction between the environment and the variability among individuals within a population
- The product of natural selection is the adaptation of populations of organisms to their environment
 - Watch: "Stated Clearly" <u>https://www.youtube.com/watc</u> <u>h?v=0SCjhI86grU</u>

S. Phillips-2019

- The evolution of insecticide-resistant insects
- Evolution of antibiotic-resistant strains of bacteria
- Industrial melanism in the peppered moth

Evidence for Evolution

S. Phillips-2019

- **Biogeography** Darwin first noticed on his voyage
- Comparative Anatomyhomologous structures function differently but have similar structures because of common ancestry
- Comparative embryologysimilarities sometimes only seen in early embryological development Molecular biology-similarities in genes and proteins (*this is BIG now)
 - Watch:

https://www.youtube.com/watch? v=ooGKYediys8&t=2s

- Fossil fishes predate all other vertebrates, with amphibians next, followed by reptiles, then mammals and birds---consistent with what Darwin predicted
- All vertebrate fossils are NOT found in rocks of the same age

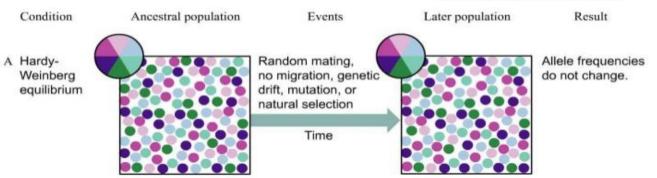
• INDIVIDUAL ORGANISMS DO NOT EVOLVE!

- Natural selection does not act on individuals, but only in the sense that it affects one individual's ability to survive and reproduce
- The smallest unit that can evolve is a population, a collection of individuals of the same species living in an area together

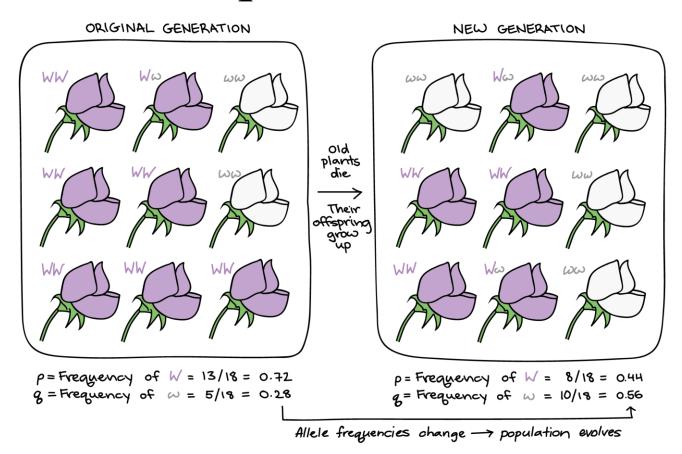
Microevolution

- Pertains to evolutionary change within a
 population, which is all the members of a single species occupying a particular area.
- Changes in allele frequencies in a gene pool of a population signifies microevolution has occurred.

Hardy-Weinberg


- The Hardy Weinberg Equation can be used to determine that evolution is occurring. *If there is no change in allele frequency from generation to generation, the population is in H-W equilibrium and no evolution is occurring.*
- Showed mathematically that microevolution will not occur in a population unless allele frequencies are acted on by a force that causes the change. In the absences of these forces, the allele frequencies will remain the same, and no evolution occurs.
- Recommended (1st) video: <u>https://www.youtube.com/watch?v=oEBNom3K9cQ</u>

Example of a Population in Hardy-Weinberg Equilibrium (**no evolution is occurring*)


Basic Assumptions of the Hardy-Weinberg Principle

- All phenotypes equal fitness, no natural selection
- No mutation
- No immigration or emigration
- No genetic drift (infinitely large population)
- No assortative mating

Of course, at least one of these factors will be acting on a population in the wild

Is this New Population in H-W Equilibrium?

S. Phillips-2019

Answer?

• No, it is not in H-W equilibrium because the allele frequencies have changed. That means evolution is occurring. The most likely reason is natural selection, but other reasons for microevolution are: gene flow, genetic drift, mutation, non-random mating

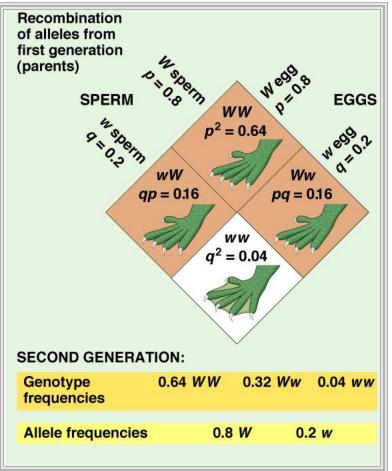
What is microevolution & what causes it to occur?

- **Genetic drift** change in the gene pool of a small population due to chance
 - Watch: <u>https://www.youtube.com/watch?v=mjQ_yN5znyk&t=12s</u>
- Gene flow gain or loss of alleles due to immigration or emigration
- Mutation- the ONLY way to get a new allele
- Non random mating- if certain individuals are preferred by the opposite sex
- Natural selection- results in adaptation
 - Watch: <u>https://www.youtube.com/watch?v=R6La6_kIr9g</u>

HARDY - WEINBERG

- A population that is not changing genetically is said to be at **Hardy–Weinberg equilibrium**
- The assumptions that underlie the Hardy–Weinberg equilibrium are (*make sure you know these!)
 - population is large
 - mating is random
 - no migration
 - mutation can be ignored
 - natural selection is not acting on the population.
- Sets up a reference point at equilibrium
- Watch: <u>https://www.youtube.com/watch?v=XlrhCRfkn1c</u>

HARDY-WEINBERG & EVOLUTION


- Biologists can determine whether an agent of evolution is acting on a population by comparing the population's genotype frequencies with Hardy– Weinberg equilibrium frequencies.
- If there is no change in frequencies, there is no evolution
- Conversely, if there have been changes in the frequencies, then evolution has occurred.
- Evolution is the change of allelic frequencies
- Let's try a problem...

HARDY - WEINBERG

- In a population at Hardy–Weinberg equilibrium, allele frequencies remain the same from generation to generation, and genotype frequencies remain in the proportions $p^2 + 2pq + q^2 = 1$.
- Two equations
 - p + q = 1
 - $\overline{A} + a = 1$, where A and a equal gene percentages
 - All dominant alleles plus all recessive alleles add up to all of the alleles for a particular gene in a population
 - Allele frequencies
 - $p^2 + 2pq + q^2 = 1$
 - $A\overline{A} + 2\overline{A}a + aa = 1$
 - For a particular gene, all homozygous dominant individuals plus all heterozygous individuals plus all homozygous recess individuals add up to all ophthesindividuals in the population
 - Genotype frequencies

HARDY-WEINBERG

Phenotypes	21	21	-
Genotypes	ww	Ww	ww
Number of animals (total = 500)	320	160	20
Genotype frequencies	$\frac{320}{500}$ = 0.64	$\frac{160}{500}$ = 0.32	$\frac{20}{500} = 0.04$
Number of alleles in gene pool (total = 1000)	640 W 160 W + 160 w 40 w		
Allele frequencies	$\frac{800}{1000} = 0.8$ V	V <u>200</u> =	0.2 w

S. Phillips-2019

HARDY-WEINBERG PROBLEM

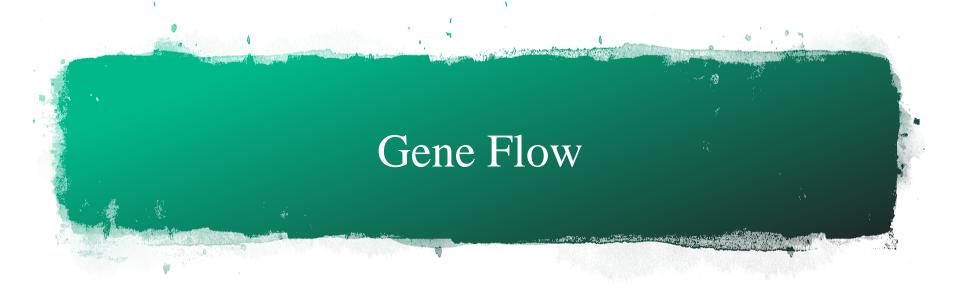
- Given: In a population of 100 individuals (200 alleles), sixteen exhibit a recessive trait.
- Problem:
 - Find the allele frequencies for A and a.
 - Find the genotypic frequencies of AA, Aa, and aa.
- Allele frequency
 - p + q = 1 or A + a = 1
 - Equation for genotype freq: $p^2+2pq+q^2=1$
 - ?% + 16% = 100% or 16% = aa and 84% = AA + Aa
 - aa = qq or $q^2 = .16$ or q = .4
 - 1 q = p 1 .4 = .6 or A = .6 and a = .4

S. Phillips-2019

HARDY - WEINBERG PROBLEM

- Phenotypic frequencies
 - If: p = .6 and q = .4, then
 - $p^2 = (.6)(.6) = .36$
 - $q^2 = (.4)(.4) = .16$
 - 2pq = 2(.6)(.4) = .48
- Therefore, in the population:
 - Homozygous dominant = 36/100 or 36%
 - Heterozygous dominant = 48/100 or 48%
 - Recessive = 16/100 or 16%

ALLELE FREQUENCY VARIATIONS


- Hardy-Weinberg applies only if there is genetic equilibrium or NO allele frequency changes
- How often in nature does this occur? –Rarely, if ever.

Causes of (micro)evolution

- **Genetic drift** change in the gene pool of a small population due to chance
- Gene flow gain or loss of alleles due to immigration or emigration
- Mutation
- Non random mating- if certain individuals are preferred by the opposite sex
- Natural selection- results in adaptation
- Watch: <u>https://www.youtube.com/watch?v=XlrhCRfkn1c</u>

- **Bottleneck effect-** a change in a populations allele frequencies due to a substantial reduction in population size ex-earthquake
- Founder effect-Colonization of a new location by a small number of individuals and the random change that occurs in a small colony. Ex- Amish population and polydactylism; species in Galapagos islands
- Genetic drift is due to chance, and not due to natural selection S. Phillips-2019

 Gain or loss of alleles from a population by the movement (migration) of individuals or gametes. Tends to reduce genetic differences between populations

• Vital to evolution because it is the only force that actually generates new alleles

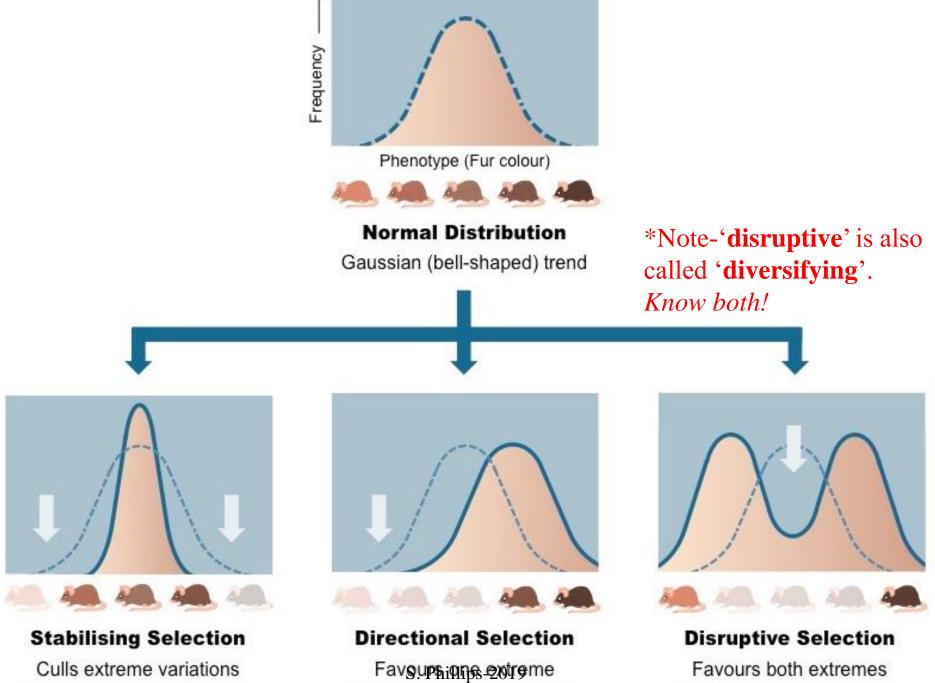
- The rule in most populations
- Tendency to mate with individuals of similar phenotype
- Tendency promotes in breeding

Natural selection

Factor most likely to result in adaptive changes in gene pool

Polymorphism

 Morph-2 or more contrasting phenotypic alleles for a trait.
 Population is poly -morphic if morphs are present in population in noticeable numbers-Ex-King snakes; blood types


• Cline-graded change in inherited traits in geographic continuum

More info

- Heterozygote advantage-promotes variability and larger gene pool
- Endangered species-generally, low variability. Danger of extinction.
- Vestigial Structure- structures that evolved and no longer have function. (Ex- appendix; pelvic bones in snakes)
- Neutral variability- No apparent selective advantage for reproductive success; not subject to natural selection. Ex- fingerprints
 - *Some scientists say there's no such thing as neutral variation $S_{S. Phillips-2019}$

Types of natural selection

- Stabilizing-favors intermediate variants
- **Directional** shifts the phenotype frequency in one direction or another. Acts against one phenotypic extreme. Common during environmental change. Expeppered moths
- **Diversifying (disruptive**) -favors both extremes over intermediates
 - **Watch: <u>https://www.youtube.com/watch?v=64JUJdZdDQo</u>
 - Also, go over the graphs given in class & complete WS

Narrows width of distribution

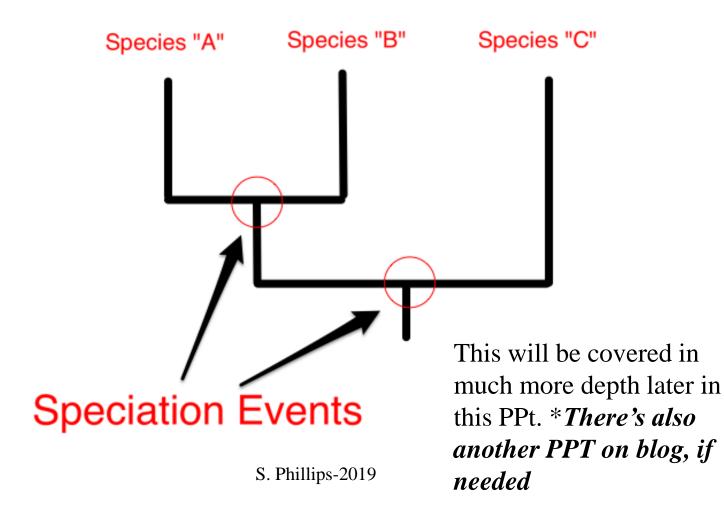
Favourphings 200rome Shifts distribution left / right Creates bimodal distribution

Macroevolution

Macroevolution- any evolutionary change at or above the level of species. It means at least the splitting of a species into two (speciation, or *cladogenesis*) or the change of a species over time into another. Speciation is the final result of changes in gene pool alleles and genotypic frequencies

• Watch:

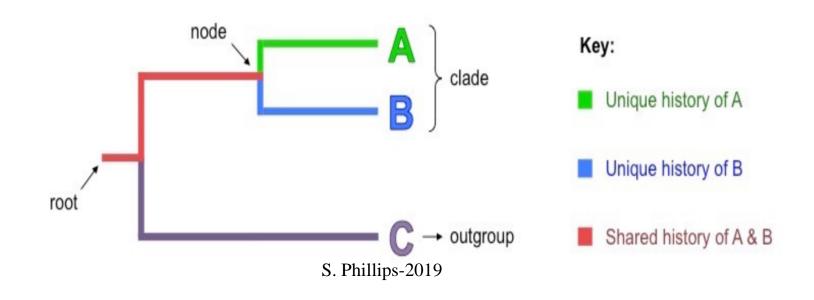
More Macroevolution


- Macroevolution: Mainly studied in the fossil record. It is contrasted with microevolution, (study of evolution over short time periods). Microevolution refers to changes in gene frequency within a population.
 Macroevolutionary events are likely to take millions of years. Speciation is the traditional dividing line between micro-and macroevolution.
- **Speciation** is the final result of changes in the gene pool and genotypic frequencies.

Speciation

• Some members of a sexually reproducing population change so much that they can no longer produce fertile offspring with members of the original population

Phylogenetic Trees & Cladograms



$Cladograms-Intro \ (\text{more depth after Evol Quiz})$

Constructed cladograms all typically share certain key features:

- Root The initial ancestor common to all organisms within the cladogram (incoming line shows it originates from a larger clade)
- Nodes Each node corresponds to a hypothetical common ancestor that speciated to give rise to two (or more) daughter taxa
- Outgroup The most distantly related species in the cladogram which functions as a point of comparison and reference group
- Clades A common ancestor and all of its descendants (i.e. a node and all of its connected branches)

Key Features of a Cladogram

What is a Species?

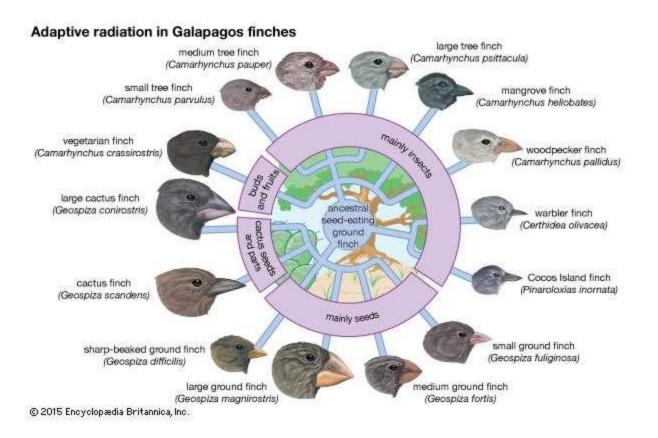
Usually defined as a group of populations that can breed among themselves to produce fertile offspring. Further, the members of a species are reproductively isolated and unable to reproduce with members of another species (no gene flow)

Watch:

https://www.youtube.com/wat ch?v=rlfNvoyijmo&t=195s

What are Reproductive Isolating Mechanisms?

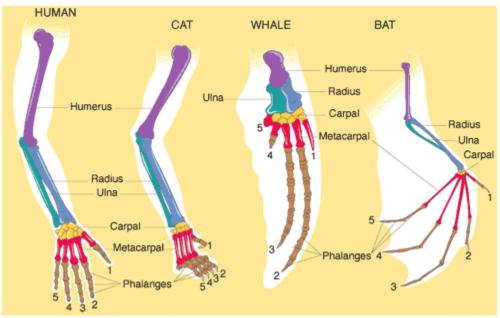
- **Prezygotic** (before the formation of a zygote) isolating mechanisms, are those that prevent reproduction attempts and make it unlikely that fertilization will be successful if mating is attempted.
- Examples:
- <u>Habitat isolation (ex- garter snake</u>. One lives on land; one in water);
- <u>Behavioral isolation</u> (certain species secrete their own pheromones; birds have distinctive mating songs);
- Mechanical isolation- sex organs are incompatible;
- <u>**Temporal isolation-**</u> species reproduce during different seasons or times of day (pollen released at different times; fireflies mate at different times of night)



- **Postzygotic** (after formation of zygote)- fert. has occurred, but hybrid offspring can't develop or reproduce.
- Ex- lion and tiger produce sterile liger; donkey and horse make mule (**FYI- a few mules have been known to reproduce with each other, but their offspring are sterile*)

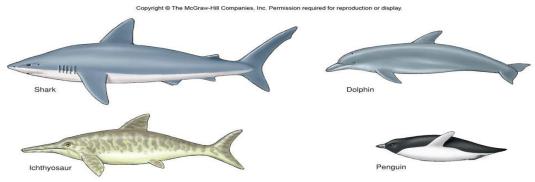
Modes of Speciation

- For speciation to occur, population must <u>diverge</u> and become reproductively isolated. Most common cause is **allopatric** speciation: populations are separated by a geographic barrier (mountain range emerges and splits population; canyons and rivers emerge or widen, etc.)
 - Adaptive radiation is divergent & here's a good example: the finches on Galapagos. There were many unoccupied niches, thus many species resulted that were able to adapt to different environments (little, if any, competition) S. Phillips-2019



- **Divergent** evolution- formation of new species. Adaptive radiation (resulting in <u>many</u> different species) is one example of divergent evolution.
- **Convergent** evolution- 2 unrelated species that are in similar niches develop similar adaptations due to similar environmental pressures.
- ****Homologous** structure (species are <u>more closely related</u>, but adapted for a different function. Ex: our arm and a bat's wing...both species are mammals) vs. **Analogous** structure (<u>less related species</u>, but adapted with a similar function: Ex- bee's wing and bird's wing...one species is an invertebrate, the other is a vertebrate...so not very related)
- Videos: 1) <u>https://www.youtube.com/watch?v=X-XtZyHcck4;</u>
- 2) <u>https://www.youtube.com/watch?v=4-QL-4z0y1U</u> (he explains it really well) S. Phillips-2019

Divergent Evolution


- **Divergent evolution** Species that share a recent common ancestor and are thus more related. Exhumans and whales are both mammals.
 - <u>Homologous structure-</u> have a different function, but similar structure and are thus more related. (Ex: human arm and whale's fin- both are mammals)

Convergent Evolution

- **Convergent evolution** 2 'unrelated' species that occupy similar type niches and therefore have similar adaptations. Many times the species are geographically far apart. Ex- 2 different plant species that are in similar climates with similar environmental pressures. Thus they have evolved similarly, yet they could be thousands of miles apart!
 - <u>Analogous structure</u>- have a similar function, but are less related. (Ex: whale and shark can both swim, but one is a mammal & the other's a bony fish)

Convergent Evolution: Streamlining

Convergent evolution is the Phillips by Phich unrelated species evolve similar physical characteristics because they have similar lifestyles

Only one is a cactus...this occurred because of convergent evolution

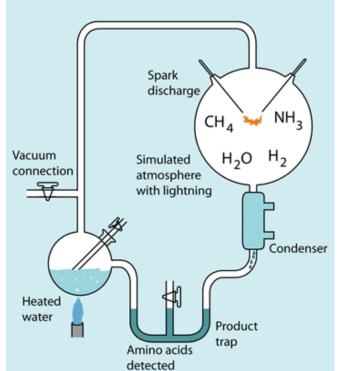

More on Speciation

- <u>Coevolution</u>- Mutualistic relationship between 2 species. Evolution of one affects the other. Ex- Flower and pollinator (like a bee)
- <u>Artificial Selection</u>- nature doesn't select...'Man' does! Ex Dog Breeds. Is picking & choosing 'desirable' phenotypes always best for the species? Why or why not?

Co-evolution

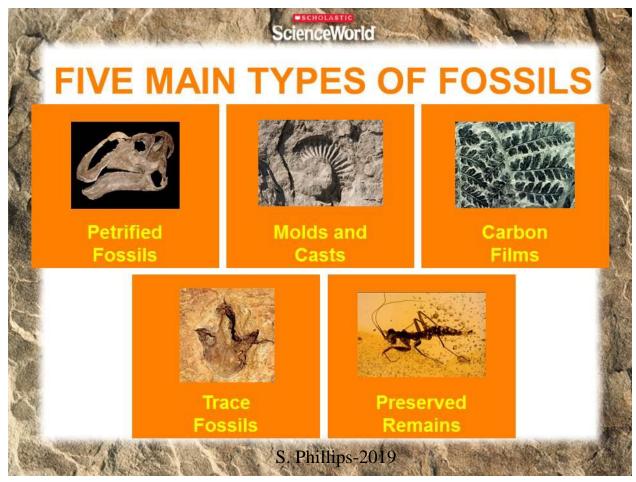
Artificial selection

Artificial Selection


Breeding for a purpose

Rate of Speciation

- **Rate of speciation-** Most evolution is believed to proceed very slowly- <u>gradualism</u> (*Darwinian idea)
- Sometimes a dramatic event occurs abruptly and speciation occurs 'faster'- <u>punctuated</u>
 <u>equilibrium</u>. Ex: after extinction of dinosaurs, mammals began to prevail (think of the newly available unoccupied niches!).
 - Scientists use fossil evidence, as well as genetic sequencing, to try and determine this.


Theories Regarding Life's Origin:

- **Oparin and Haldane** (1920)- suggested first organic molecules came from early atmospheric gases (abiotic synthesis)
- Miller and Urey (1950)- Confirmed above theory by <u>transforming small reduced particles</u> (NH3, H2, CH4, H20, etc) to <u>amino acids</u> with electric spark (simulating lightning)
- *What does reduced mean again??
 - Think back to Respiration (NADH)

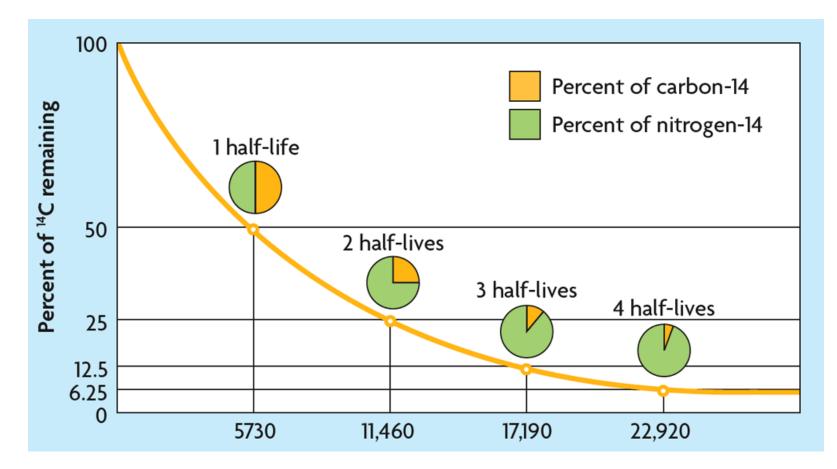
Early Life: Fossil Evidence

- Paleontologist- Studies Fossils
- Types of fossils:

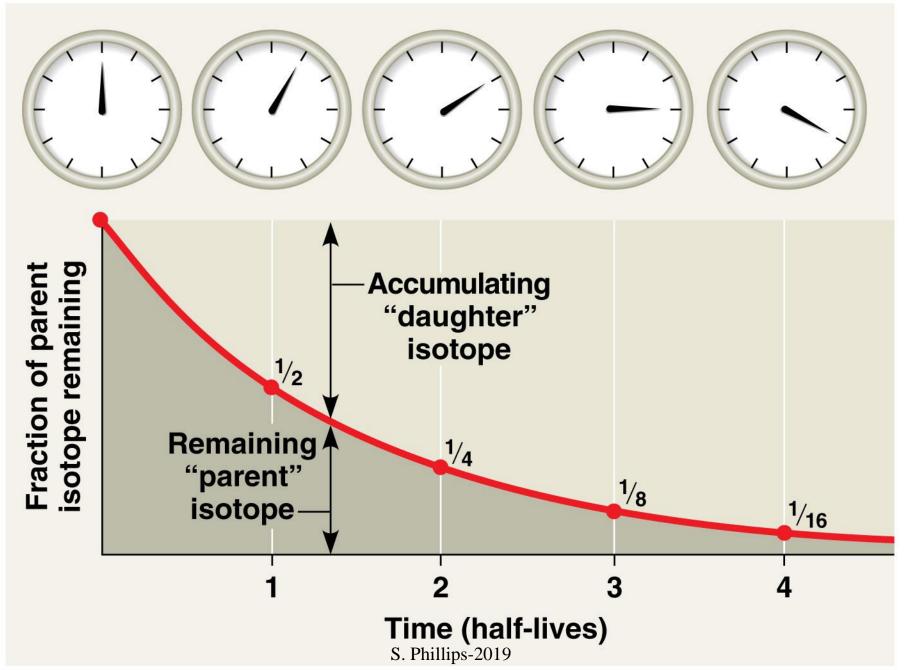
FOSSIL DATING

Relative Dating

Radiometric Dating

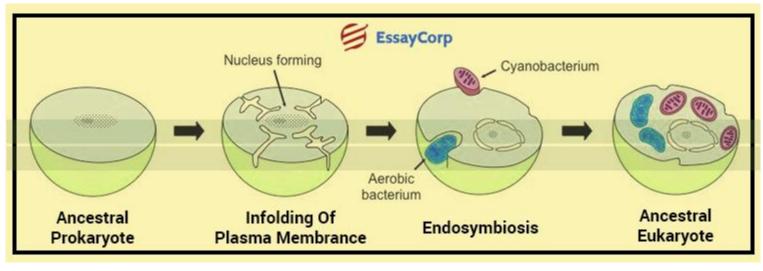

Both are used to date fossils and determine age

- Uses order of rock strata to determine relative age of fossils
- Measure decay of radioactive isotopes present in layers where fossils are found
 - Aka 'Absolute Dating'
- <u>Half-life</u>: # of years for 50% of original sample to decay

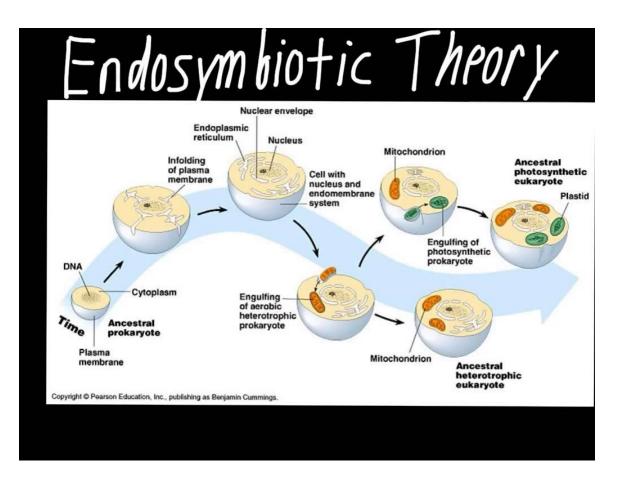

Radiometric Fossil Dating

- <u>Radiometric Dating (Absolute Dating)</u>: Halflives are used to determine a fossils age. The half life of an isotope is the time it takes for ¹/₂ of an isotope to decay (break down). Carbon-14 is used to date fossils.
- <u>Ex. of Radiometric Dating</u>: The half life of Carbon-14 is 5730 years. In 2 half-lives, how much C-14 would remain? How old would the fossil be? *Interpret the graph on next page*.
 - *This was also taught in Magnet Chemistry-Unit 1

Radiometric Dating of Fossils (*this one's easy...just read the graph)


S. Phillips-2019

More Theories of Life


- Theories of how life began:
 - Spontaneous Generation- life from nonlife
 - Theory of Biogenesis- life from life
 - Endosymbiotic theory- A theory stating that the eukaryotes evolved through a process whereby different types of free-living prokaryotes became incorporated inside larger prokaryotic cells and eventually developed into mitochondria, chloroplasts, and possibly other organelles.**BE SURE YOU KNOW THIS ONE*!
 - See next slide S. Phillips-2019

Endosymbiotic Theory

Formation of ER

Became mitochondria & chloroplasts- both have their own DNA, plus double membranes

For more detail and information:

Go to my blog, Power Point Section, click "Phylogeny"

Also posted: "Evidence for Evolution"

<u>Make sure</u> to check out the numerous <u>linked videos</u> on my blog. They are <u>NOT</u> all linked in this PPt

Part 2: The Diversity of Life

Classification of Organisms Viruses, Prokaryotes, Protists and Fungi

**SEE NEXT PPT!

Magnet: Mader Text- <u>Parts</u> of 20-23; Open<u>S</u>tax online Text

So what exactly is Classification?

- Life on Earth is constantly changing (evolving)
- Scientists have currently identified around 1.5 million species (and estimate another 2-100 million species yet to be discovered)
 - Remember: A <u>species</u> is a population of organisms that share similar characteristics and can breed with one another and produce fertile offspring.
- This diversity creates an organizational challenge.
 - To deal with this, biologists name each organism and attempt to <u>organize</u> living things into groups that have biological meaning.
 - Watch:

1.5 - 2 million known species...

 Bacteria
 4,000

 Protozoa, algae, etc.
 80,000

 Fungi
 70,000

 Plants
 321,000

 Animals
 1,320,000

 •insects
 1,000,000

 •vertebrates
 62,000

Taxonomy

- Scientists classify organisms and assign each organism a universally accepted <u>name based on a common criteria</u> <u>taxonomy</u>
- Science requires both general and very specific categories to properly categorize all organisms.
- Organisms placed into a particular group are more similar to each other that they are to organisms in other groups.
- Systematics is a broader science that deals with both taxonomy and evolutionary history (phylogeny) S. Phillips-2019

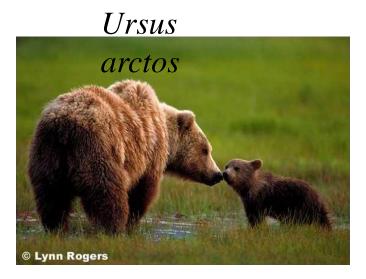
Scientific Names

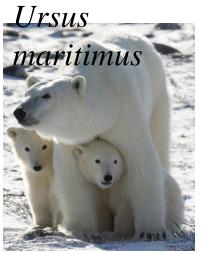
- There was confusion among scientists when they used <u>common names</u>.
- In the eighteenth century, scientists created a scientific name for each species using Latin and Greek languages.
 - Originally, scientists named organisms according to their <u>physical characteristics</u>, but names were long and inefficient.
 - Then, <u>Carolus Linnaeus</u>, a Swedish botanist known as the 'Father of Taxonomy', developed a system of assigning each species a <u>two-part scientific name</u> = <u>binomial</u> <u>nomenclature (*Genus and species*).
 </u>
- Today, scientists still use this binomial nomenclature based on Latin and Greek to name newly discovered species. S. Phillips-2019

Binomial Nomenclature

- 2 part scientific name
 - <u>Genus</u> larger group to which organism belongs
 - always capitalized
 - <u>species</u> specific name for that organism
 - always lowercase
 - example: Linnaeus named humans <u>Homo</u>
 <u>sapiens</u>
 - means "wise man"
 - perhaps in a show of hope & optimism

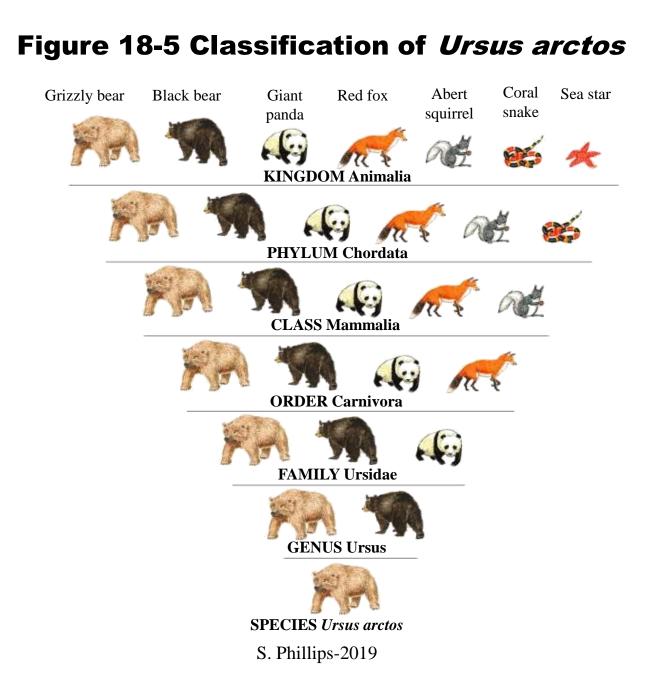
Genus groupings


- Classify organisms into broader groups
- Species that are closely related are grouped into the same genus
 - Leopard
 - African lion
 - Tiger


Panthera pardus Panthera leo Panthera tigris

Grizzly Bear and Polar Bear

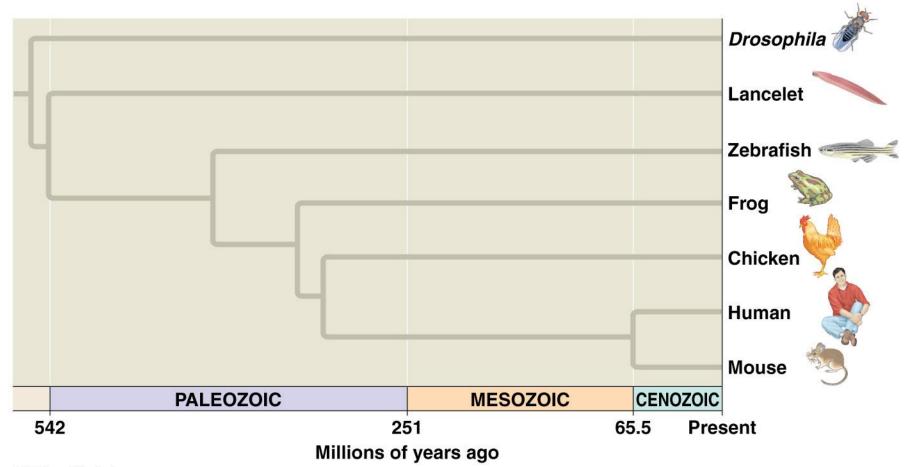
- The genus *Ursus* indicates that it is a bear, but the species name describes either where the species lives or characteristics of the species.
- What do you think maritimus means?
- *maritimus* refers to the sea in Latin
- How does this relate to polar bears? S. Phillips-2019



Linnaeus's System of Classification

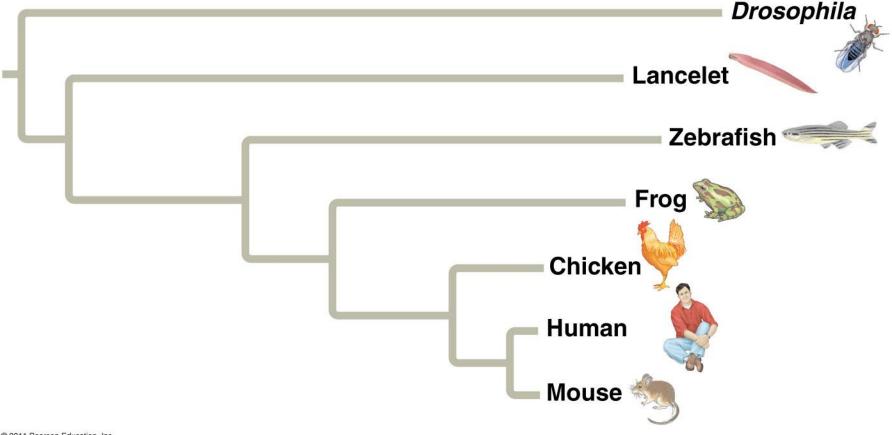
- Uses seven <u>taxon</u>omic categories (largest to smallest):
 - Kingdom
 - Phylum
 - Class
 - Order
 - Family
 - Genus
 - species

"King Philip Came Over For Grape Soda" S. Phillips-2019

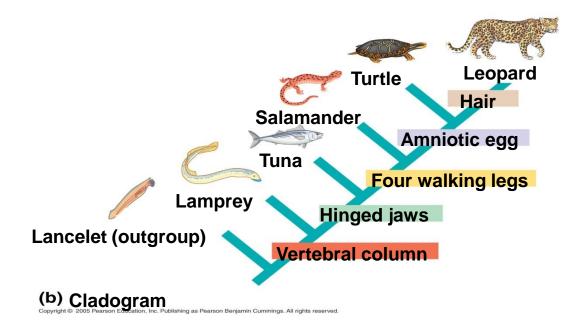

Modern Evolutionary Classification

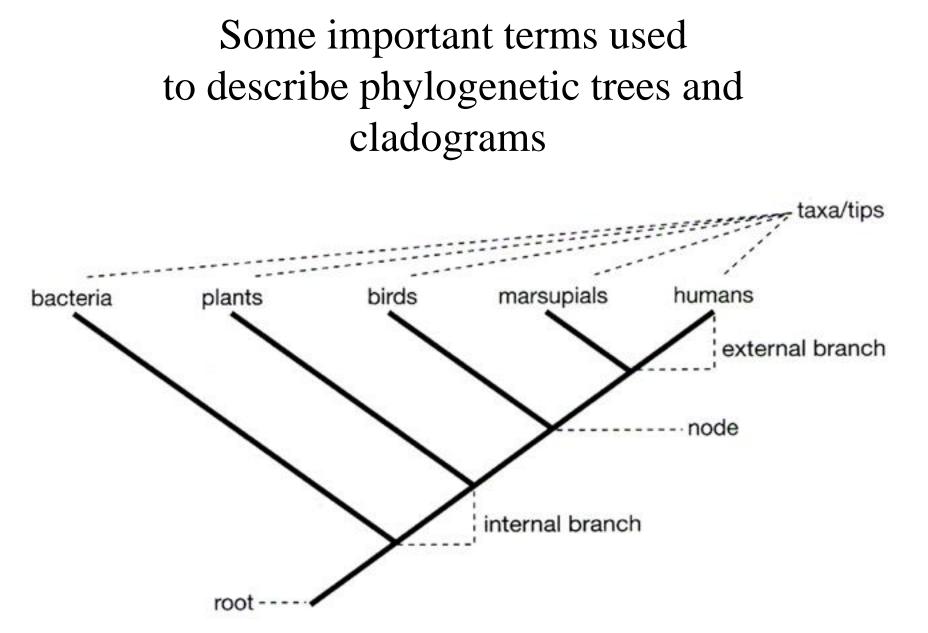
- Linnaeus focused on structures and anatomy.
 - Due to convergent ("coming together") evolution, organisms that were quite different evolved similar analogous adaptations because of selective environmental pressures.
 - Bat and Bird wings
 - Whale and fish fins
- Darwin's theory of evolution changed how biologists classify organisms.
- Biologists now group organisms into categories that represent <u>lines of evolutionary descent (the evolutionary history they share)</u>, not just similar <u>traits = Evolutionary Classification</u>.

Cladograms

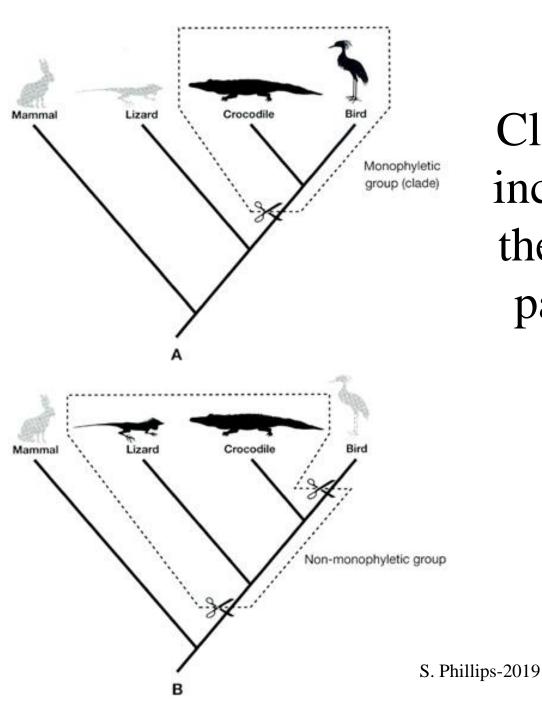

- <u>**Cladogram**</u> = a diagram that shows the <u>evolutionary</u> <u>relationships</u> among a group of organisms ("evolution family tree")
- <u>Cladistic analysis</u> = using cladograms to map out evolutionary history
- Based on <u>derived characters</u> = new characteristics that appear in recent parts of a lineage arising as lineages evolve over time
- *FYI- although a **phylogenetic tree** is similar, the length of the branches correspond to time (or genetic differences), whereas a cladogram does not
 - <u>VIDEOS</u>: Here's one of many: <u>https://www.youtube.com/watch?v=ouZ9zEkxGWg</u>
 - Go to my blog. There are many other linked videos & it's vital you learn how to construct & analyze these!
 S. Phillips-2019

Phylogenetic Trees: Branch lengths can indicate time

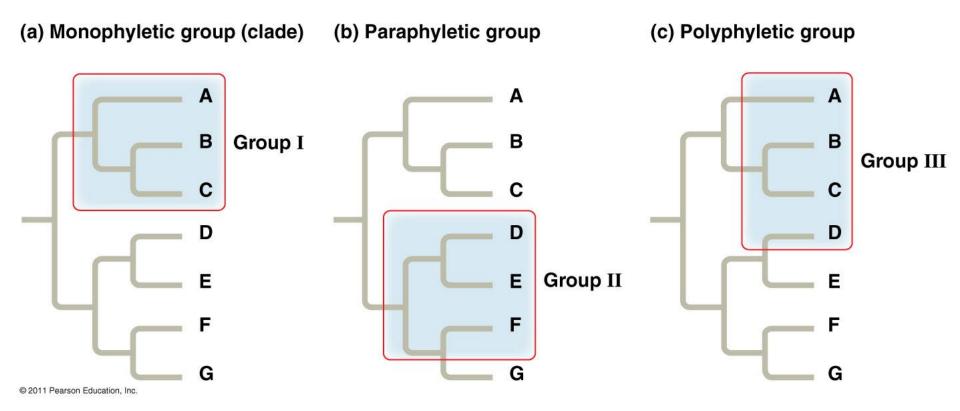

© 2011 Pearson Education, Inc.

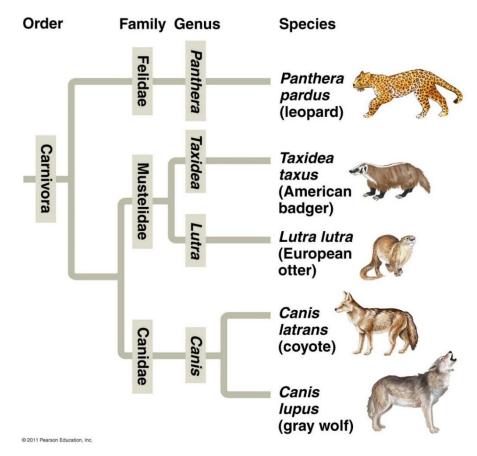

Branch lengths can also represent genetic change



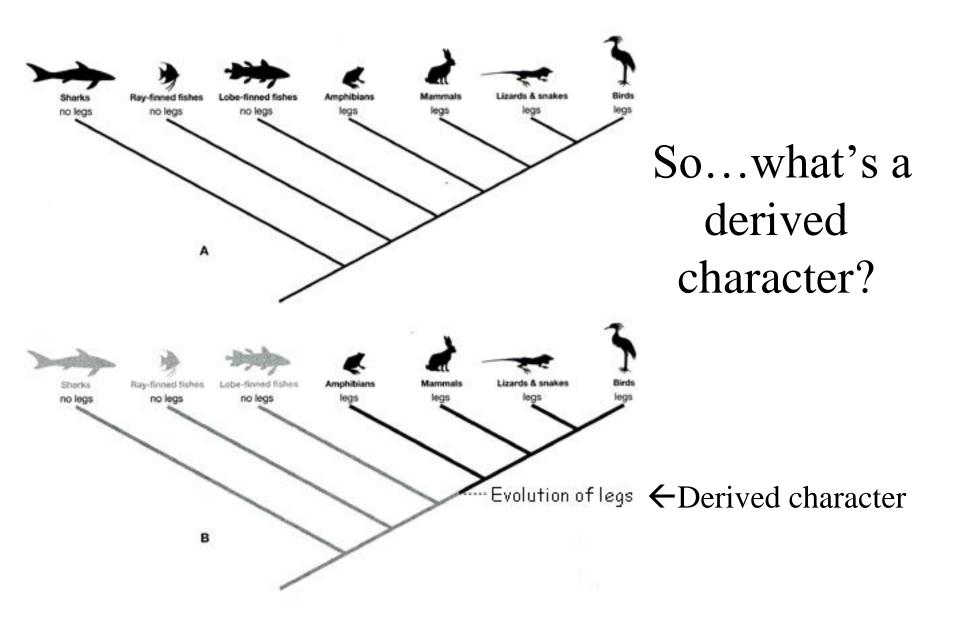

<u>Cladogram</u>: diagram that depicts patterns of shared characteristics among taxa

- <u>Clade</u> = group of species that includes an ancestral species
 + all descendents. (*Lines do not = time)
- Shared derived characteristics are used to construct cladograms

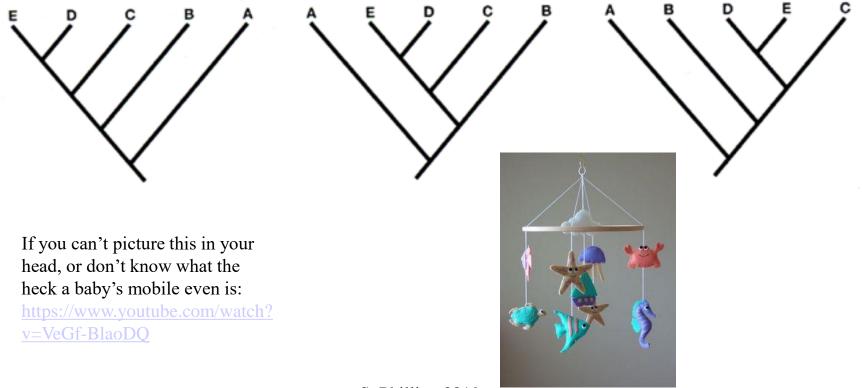



Cladogram: A **clade** includes *all* and *only* the descendants of a particular ancestor

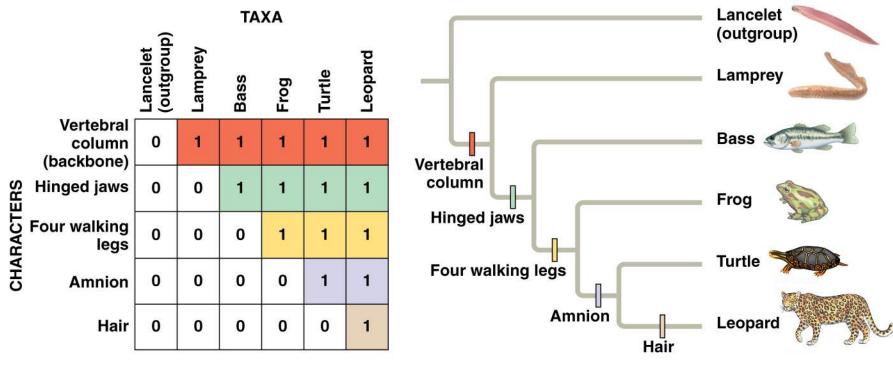
Monophyletic, paraphyletic, and polyphyletic groups



Monophyletic- includes all members of a clade; FYI: Paraphyleticexcludes 1 or more members of clade; Polyphyletic- includes 1 or more from a different clade (but not all)


Find All of the Monophyletic Groups on this Tree:

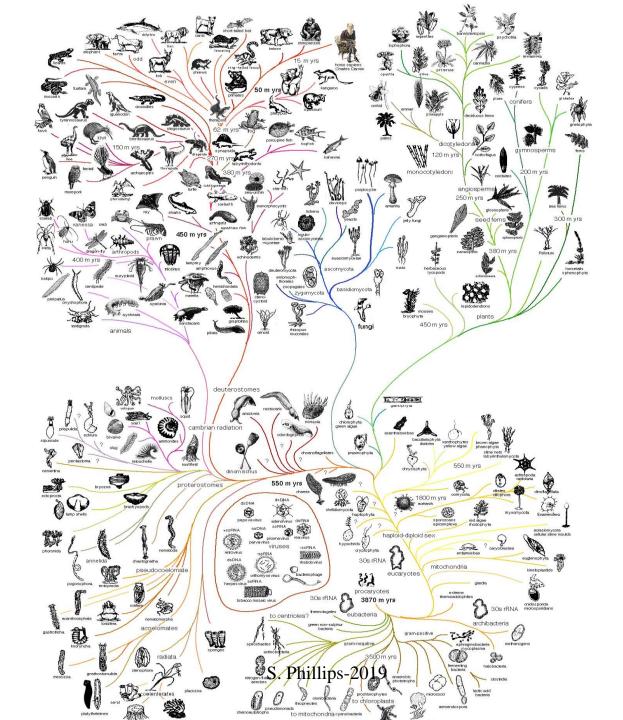
S. Phillips-2019



Three trees, all depict the <u>same</u> evolutionary history (the nodes can 'rotate'...kind of like a baby's mobile works)

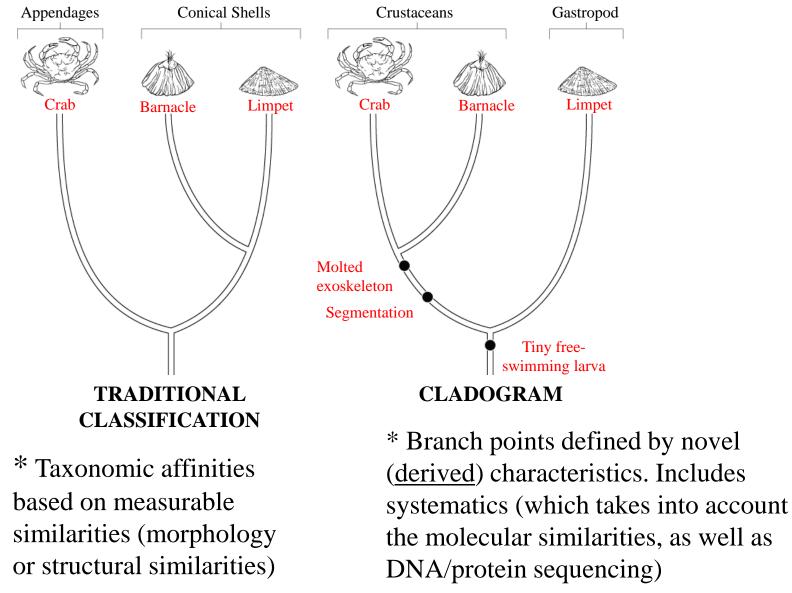
S. Phillips-2019

Constructing a Tree



(a) Character table

(b) Phylogenetic tree


© 2011 Pearson Education, Inc.

A 0 indicates a character is absent; a 1 indicates that a character is present. What is the Outgroup?

How would you group these organisms?

S. Phillips-2019

If needed, be sure to....

 Review the other PPt on my blog regarding Phylogeny (and watch the linked videos on my blog)

Similarities in DNA & RNA

- Other classification systems are based on anatomical similarities and differences, but how would you compare very different organisms?
- All organisms use DNA & RNA to pass on information and control growth and development.
- Since there are many <u>similar genes</u> in all forms of life suggesting a <u>common ancestry</u>, these molecules are an excellent way to compare organisms.
- The genes of many organisms show important similarities at the molecular level. These <u>molecular similarities</u> can be used as criteria to help <u>determine classification</u>.

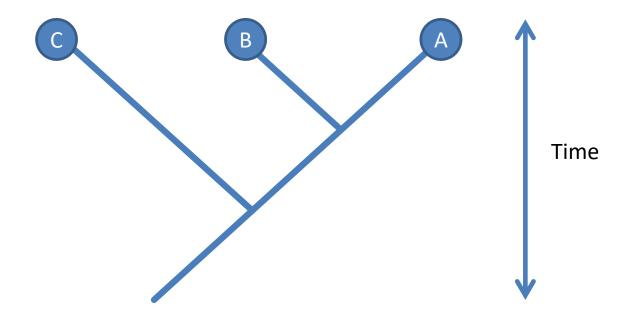
Vultures and Storks?

American vulture

African vulture

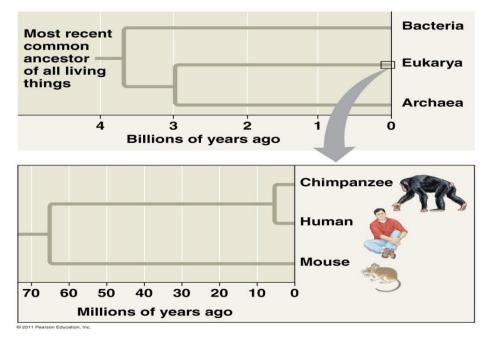
Traditionally, American vultures and African vultures were classified together in the falcon family. Recently, because the American vulture and stork share a common cooling behavior, scientists compared their DNA, and discovered that the American vulture and stork are more closely related than the American vulture and African vulture.

Stork


S. Phillips-2019

Molecular Clocks

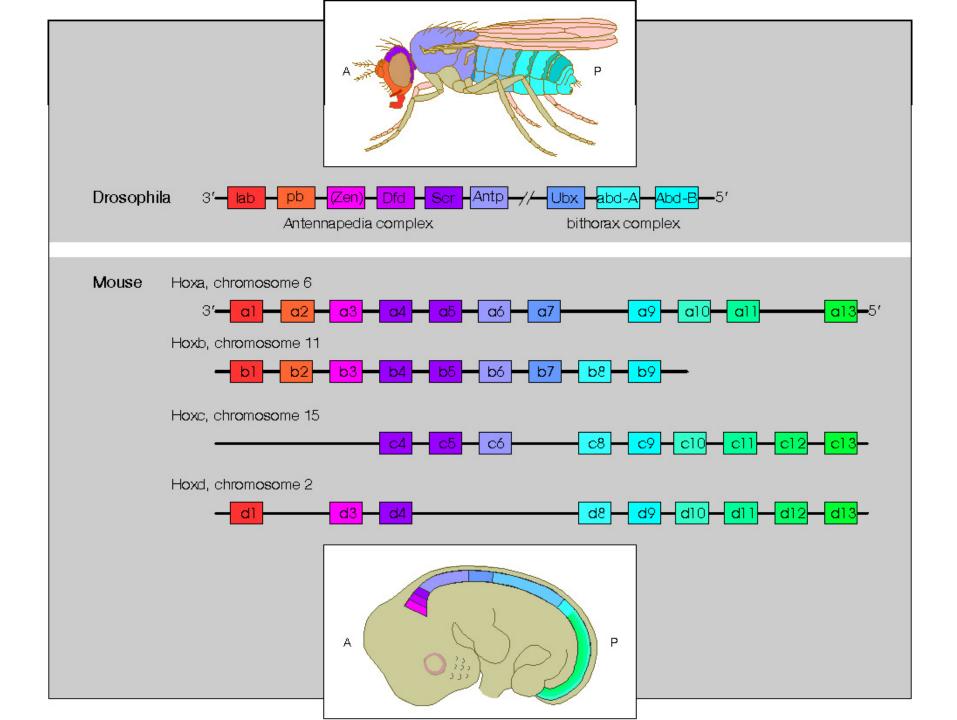
- Uses DNA comparisons to estimate the length of time that two species have been evolving independently.
- <u>Mutations</u> occur all the time, causing slight <u>changes in DNA</u>.
- Mutations build up with time and the <u>more</u> <u>difference in mutations</u> of specific genes, the <u>less related</u> they are with a common ancestor further back in history.


The assumption is that these changes occur at a 'regular' rate. (**which may not always be the case, as mutations are random*)

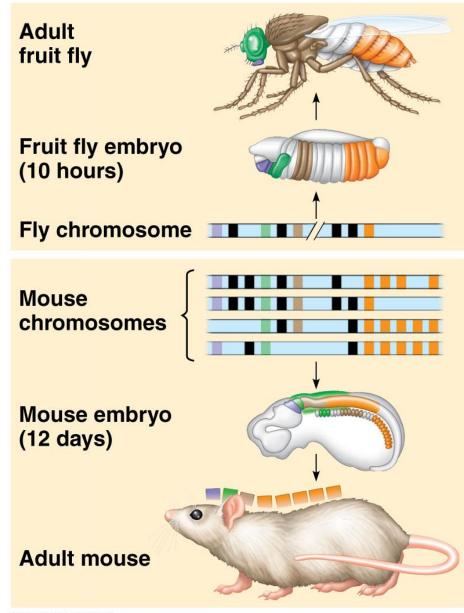
Therefore if species A had 5 differences from species B and 10 differences from species C, then the lineages for A and C must have split twice as long ago as for A and B

Evolutionary Development Biology: Evo-Devo (* "hot topic" in biology)

- Discipline concerned with discovering and understanding the role of changes in developmental mechanisms
- Compares developmental processes to understand how changes can lead to evolution of organisms


Evolutionary Development Biology

- So what exactly is it?
- Evolutionary developmental biology (Evo-Devo) is a discipline concerned with discovering and understanding the role of changes in developmental mechanisms in the evolutionary origin of aspects of the phenotype. In a very real sense, Evo-Devo "opens the black box" between genotype and phenotype.


Remember all that 'junk' DNA (over 98% of genome)? Here's (just) one example of it's function:

Homeotic (Hox) genes: master regulatory genes

- Act as master 'switches' which control placement and spatial organization of body parts. It's like the 'architect'...
- Highly conserved between species. Found in many groups (fungi, animals, plants)
- Hints at relatedness between all life forms
- Note the similarities on the next slide
- https://www.youtube.com/watch?v=14yxfot5sq8
- https://www.youtube.com/watch?v=9sjwlxQ_6LI
- https://www.youtube.com/watch?v=ydqReeTV_vk

Conservation of homeotic genes

© 2011 Pearson Education, Inc.

New Kingdoms

- As evidence about different organisms continues to accumulate, biologists adjust the classification system.
- The current classification system includes six kingdoms:
 - Eubacteria
 - Archaebacteria

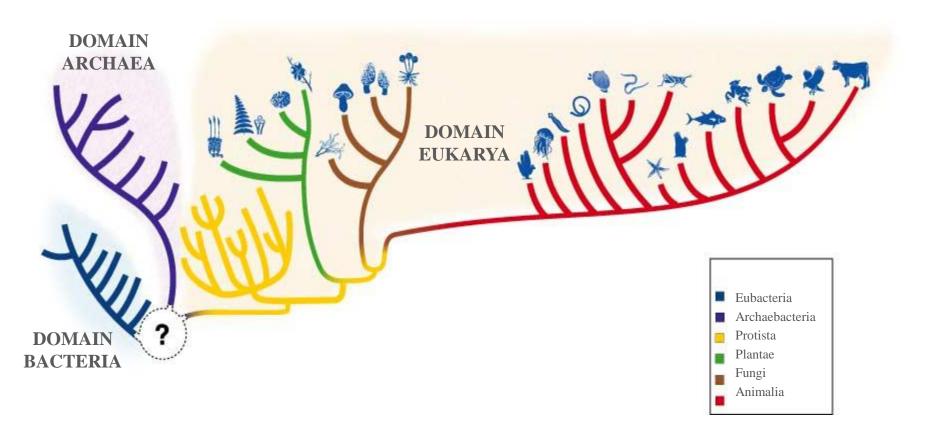
– Protista

- Fungi
- Plantae

– Animalia

- Formerly together in K. Monera

The Tree of Life Evolves


Changing Number of Kingdoms							
Introduced Names of Kingdoms							
1700's	Plantae					Animalia	
Late 1800'	s Protista			Planta	e	Animalia	
1950's	Monera		Protista	Fungi	Plantae	Animalia	
1990's	Eubacteria	Archaea- bacteria	Protista	Fungi	Plantae	Animalia	

Review the Domains Chart I gave you in Unit 1.

*Watch: <u>https://www.youtube.com/watch?v=wGVgIcTpZkk</u>

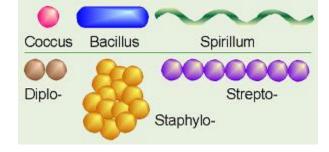
Three-Domain System

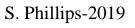
- Using molecular analyses, scientists group modern organisms into three, more general categories (<u>domains</u>) according to how long they have been evolving independently.
- The three domains are:
 - Bacteria
 - Archaea
 - Eukarya

Domain Bacteria

- Kingdom: Eubacteria
- Unicellular
- Prokaryotic
- Cell walls with peptidoglycan
- Range from <u>free-living</u> soil organisms to deadly <u>parasites</u>.

lactobacillus




Bacteria

- Have nucleoid region (NO nuclear membrane)
 - Large circular chromosome; also has plasmids
- Bacteria- Usually 1-10 um long
- Many secrete sticky substance that forms **capsule** outside wall.
- Cell wall prevents osmotic rupture.
- <u>Penicillin</u>, the first successful antibiotic, was derived from the *Penicillium* mold. It is able to break down cell wall and allows osmotic rupture

Bacteria

- Some use O₂—others are anaerobes (may be obligate or falcultative)
- Some are flagellated (why? where?)
- Fimbriae (extensions) help bacteria to adhere to surfaces.
- <u>Pili</u> used for conjugation (sexual reproduction)
- Reproduce asexually by <u>binary fission</u>
- Shapes:
 - Cocci-spheres
 - Spirillum (spirochete)-spiral (helical)
 - Bacillus-rod shaped

'Typical' Bacterial Cell

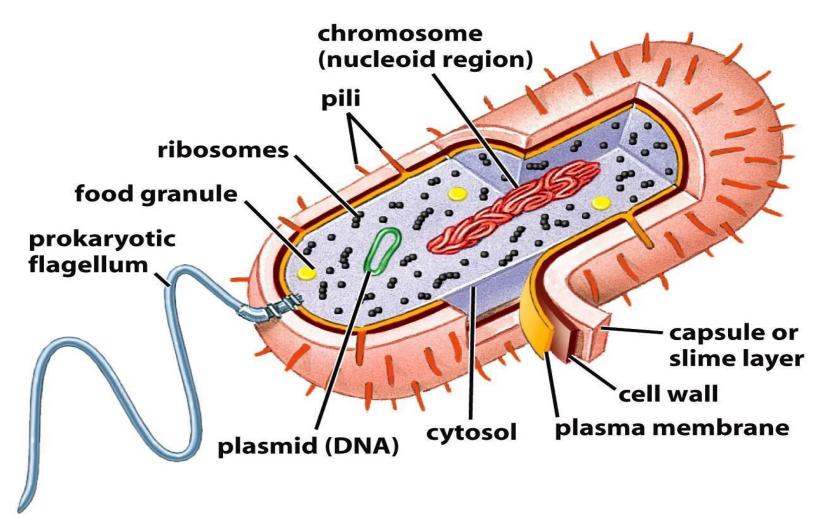


Figure 4-20a Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Prokaryotes are the foundation of life on earth

- Most bacteria are VERY beneficial
- Decompose dead organisms
 - Decomposers, saprobes, saprophytes
- Perform nitrogen fixation
- Live in our digestive system and are also used in the food industry
 - Cheese, yogurt, etc
- Used to decompose waste in sewage
- However, some bacteria cause disease Usually produce toxins. Ex- bacteria that causes botulism (paralyzes nerve cells). Other diseases: Lyme disease; strep throat; syphilis; gonorrhea

Some Prokaryotes Cause Disease

- Usually produce toxins. Ex- bacteria that causes botulism (paralyzes nerve cells).
 - Ever heard of an endospore? 1g of botulism toxin can kill 10⁶ people!
- Other diseases: Lyme disease; strep throat; syphilis; gonorrhea
- Antibiotics are currently the most effective means of fighting bacterial infections
- **No known Archaea cause disease

Domain Bacteria

•The domain Bacteria corresponds to the kingdom **Eubacteria**.

•Be sure and review Bacteria info studied in both the Cell & DNA units!

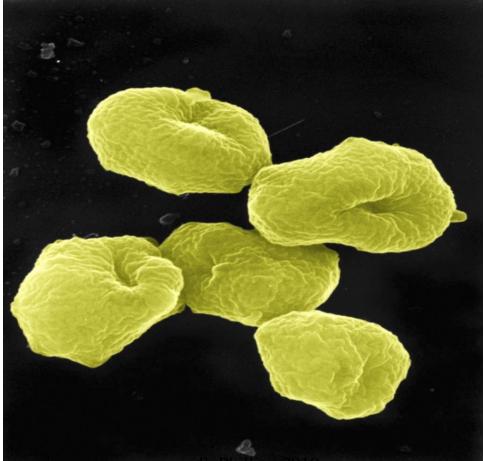
•*Ex- Think back & connect to a previous unit...what is transformation?*

Classification of Living Things				
DOMAIN	Bacteria			
KINGDOM	Eubacteria			
CELL TYPE	Prokaryote			
CELL STRUCTURES	Cell walls with peptidoglycan			
NUMBER OF CELLS	Unicellular			
MODE OF NUTRITION	Autotroph or heterotroph			
EXAMPLES	Streptococcus, Escherichia coli			

Domain Archaea

- Kingdom: Archaebacteria
- Unicellular
- Prokaryotic
- Live in the most <u>extreme</u> environments (volcanic hot springs, brine pools, black organic mud without oxygen)
- Live in absence of oxygen
- Cell wall lacks peptidoglycan
- Cell membranes contain unusual lipids not found in any other organism
- No known archaea cause disease

Archaea in Anaerobic Environment



Archaea in Hot Spring

Major Groups of Archaea

- Extremophiles-3 types
 - <u>Methanogens</u>- are poisoned by oxygen; use CO₂ as the electron acceptor in respiration; produces methane as a waste product
 - Ex: Swamps! Think about the 'bubbling'. What causes it?
 - <u>Halophiles</u>- live in places with high salinity
 - Ex: Great Salt Lake; Dead Sea
 - <u>Thermophiles</u> (aka hyperthermophiles)
 - Ex: "Old Faithful" Yellowstone Park S. Phillips-2019

Archaea

5. Phillips-2019

Archaebacteria

- Used to be grouped with bacteria and called monerans
- Now believed eukaryotes evolved from archaeal line of descent
- Archaea and Eukarya share some of the same rRNA sequences and ribosomal proteins; also, similar tRNA
- Archaea have "unusual" diverse lipids in membrane that allow them to live under extreme conditions
- Cell walls are not peptidoglycan
- **Some Archaea have introns; bacteria do not S. Phillips-2019

Domain Archaea

•The domain Archaea corresponds to the kingdom **Archaebacteria**

Classification of Living Things					
DOMAIN	Archaea				
KINGDOM	Archaebacteria				
CELL TYPE	Prokaryote				
CELL STRUCTURES	Cell walls without peptidoglycan				
NUMBER OF CELLS	Unicellular				
MODE OF NUTRITION	Autotroph or heterotroph				
EXAMPLES	Methanogens, halophiles				

The Origin of the Eukaryotic Cell

• Eukaryotic cells arose through a combination of 2 processes:

- membrane infolding- produce all the membrane-bound organelles (Ex: ER) except the mitochondrion and the choloroplasts.

 Endosymbiosis-Mitochondria and chloroplasts believed to once be prokaryotic cells that were ingested or absorbed by another prokaryotic cell.

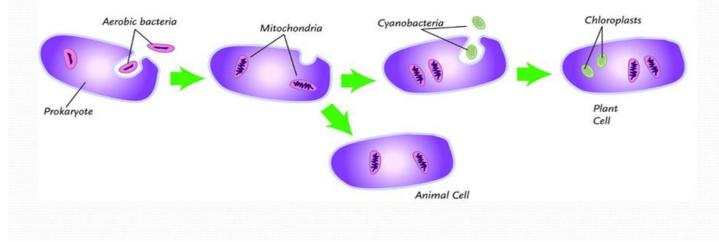
Endosymbiotic Theory

Endosymbiotic Theory

A prokaryote ingested some aerobic bacteria. These aerobes were protected by the prokaryote and produced energy for it.

a

Ь


Over a long period of time, these aerobes became mitochondria, and they couldn't live on their own anymore.

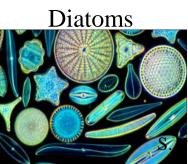
C

Some of these primitive prokaryotes also ingested cyanobacteria. Cyanobacteria contain photosynthetic pigments.

Over a long period of time, the cyanobacteria in these prokaryotes became chloroplasts and couldn't live on their own anymore.

Domain Eukarya

- All of the organisms that have a true <u>nucleus</u> (nuclear envelope/ membrane)
- Kingdoms:
 - Protista (*the 'junk drawer'. It's under 'revision'...but that shouldn't be a factor for EOC)
 - Fungi
 - Plantae
 - Animalia


Classification of Living Things								
DOMAIN	Eukarya							
KINGDOM	Protista Fungi Planta			Animalia				
CELL TYPE	Eukaryote	rote Eukaryote Eukaryote		Eukaryote				
CELL STRUCTURES	Cell walls of cellulose in some; some have chloroplasts	Cell walls of chitin	Cell walls of cellulose; chloroplasts	No cell walls or chloroplasts				
NUMBER OF CELLS	Most unicellular; some colonial; some multicellular	Most multicellular; some unicellular	Multicellular	Multicellular				
MODE OF NUTRITION	Autotroph or heterotroph			Heterotroph				
EXAMPLES	Amoeba, Paramecium, slime molds, giant kelp	Mushrooms, yeasts	Mosses, ferns, flowering plants	Sponges, worms, insects, fishes, mammals				

Domain Eukarya

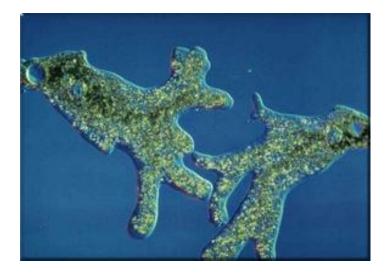
Kingdom Protista

- Most diverse kingdom
- Most are unicellular, but some are multicellular
- Some are autotrophic (<u>Algae</u>), others are ingestive heterotrophs (<u>Protozoans</u>), others are absorptive heterotrophs (Slime Molds)
- Some share characteristics with plants, others with fungi, and others with animals
- Ex:Amoeba

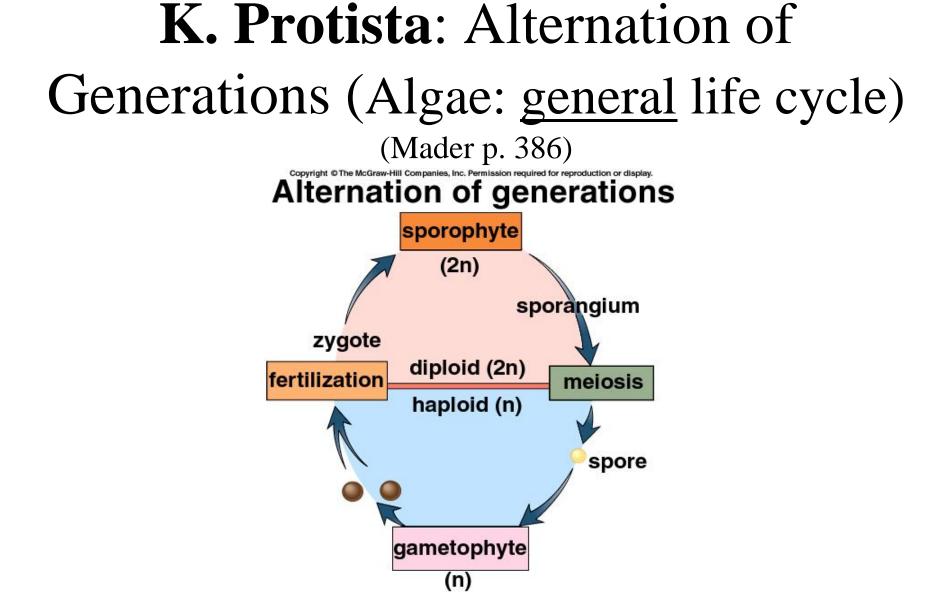
hillips-2019

Kingdom Fungi

- Heterotrophs (digest food extracellularly & then <u>absorbs</u> the smaller molecules)
- Composed of thread-like <u>hyphae</u> (mass of hyphae called <u>mycelium</u>)
- Multicellular (except yeast)
- Important decomposers!
- Cell walls: made of chitin
- some cause disease (exathlete's foot)
- Ex:mushroom

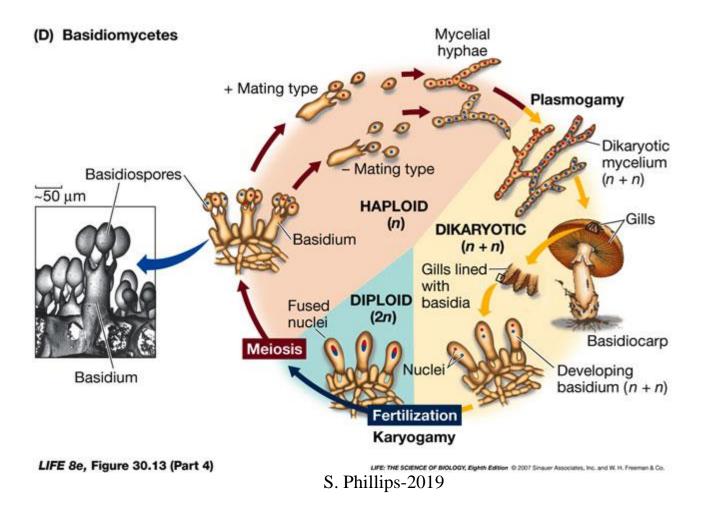

mold

K. Protista


Protozoans- classified by how they move

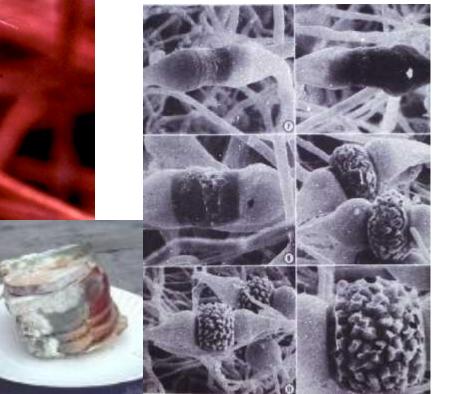
• Amoeba-pseudopodia

Paramecium (cilia)




- the haploid stage is the main vegetative stage of most protists; only the zygote is diploid. Zygotes undergo meiosis and become haploid (spores). *Why do they need spores*??

K. Fungi General Life cycle


- See next slide for life cycle of mushroom
- Stages of a mushroom:
 - Dikaryotic- cytoplasm merges between the 2 mating types, but nuclei do not (contains 2 haploid nuclei/cell)
 - Diploid- Haploid nuclei fuse in fruiting body of mushroom forming diploid zygote
 - Haploid-Zygote undergoes meiosis and forms haploid spores. Spores then germinate and S. Phillips-2019

Mushroom Life Cycle- *Do not need to know specific life cycles (only a general one). This is just one example of many. FYI- Spores are produced by meiosis in the sporangium (basidium is just a more specific name for one in a mushroom)

Zygomycota (bread mold)-*<u>These slides are just for viewing</u>. Don't <u>memorize phyla names</u>!



Can you find which pic is dikaryotic?

Ascomycota- sac fungi

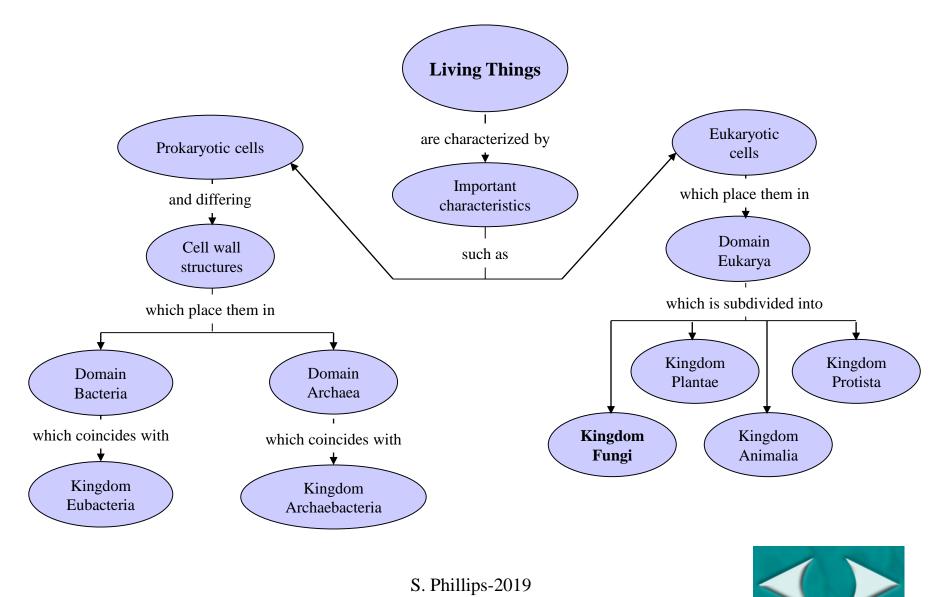
Basidiomycota- club fungi

S. Phillips-2019

Deuteromycota- 'imperfect' fungi

Domain Eukarya- con't

- Kingdom Animalia
 - Multicellular
 - Heterotrophic (consume/ingest food)
 - No cell walls
 - Motile (can move)
 - *More in next unit



- Kingdom Plantae
 - Multicellular
 - Photosynthetic autotrophs (make food; produce O2)
 - Non-motile (can't move from place to place)
 - Cell walls with cellulose
 - Cone-bearing, floweringplants, mosses, & ferns
 - *More in next unit

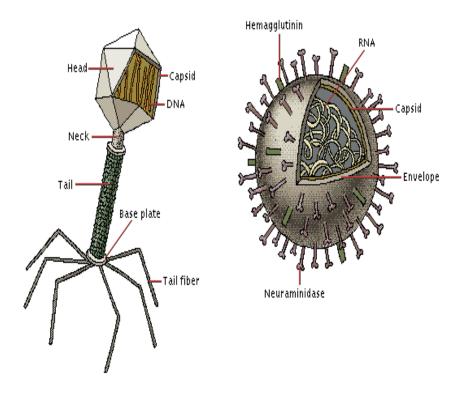
Kingdoms and Domains

DOMAIN	Bacteria	Archaea	Eukarya			
KINGDOM	Eubacteria	Archaebacteria	Protista	Fungi	Plantae	Animalia
CELL TYPE	Prokaryote	Prokaryote	Eukaryote	Eukaryote	Eukaryote	Eukaryote
CELL	Cell walls with	Cell walls without	Cell walls of cellulose in some;	Cell walls of chitin	Cell walls of cellulose;	No cell walls or chloroplasts
STRUCTURES	peptidoglycan	peptidoglycan	some have chloroplasts		chloroplasts	
NUMBER OF CELLS	Unicellular Autotroph or heterotroph <i>Streptococcus,</i> <i>Escherichia coli</i>	Unicellular	Most unicellular; some colonial; some multicellular Autotroph or heterotroph	Most multicellular; some unicellular	Multicellular	Multicellular
MODE OF NUTRITION EXAMPLES		Autotroph or heterotroph Methanogens, halophiles	<i>Amoeba, Paramecium,</i> slime molds, giant kelp	Heterotroph Mushrooms, yeasts	Autotroph Mosses, ferns, flowering plants	Heterotroph Sponges, worms, insects, fishes, mammals

Dichotomous Keys

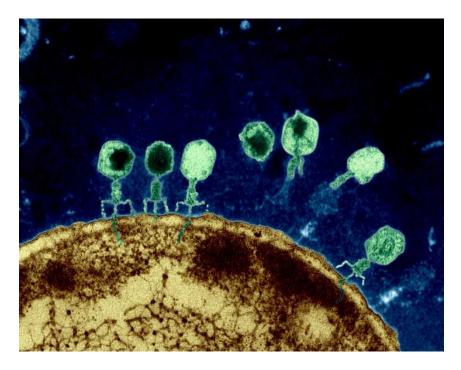
- Dichotomous keys are tools used to <u>identify</u> organisms.
- Dichotomous means "divided into two parts"
- It includes a series of <u>paired statements</u> based on <u>physical characteristics</u> that are chosen and lead the user to the correct name of the organism.
- Let's try one together!

Can you make a key?

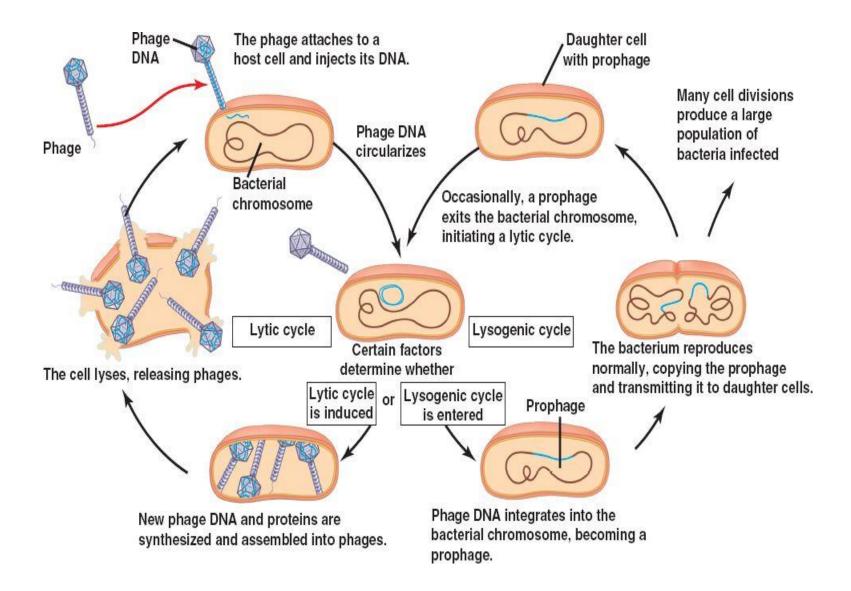

The Tree of Life Evolves

		Chang	Changing Number of Kingdoms					
I	ntroduced	Names of Kingdoms						
	1700's	Plantae					Animalia	
	Late 1800's	Pı	otista		Plantae	;	Animalia	
	1950's	Monera		Protista	Fungi	Plantae	Animalia	
	1990's	Eubacteria	Archae- bacteria	Protista	Fungi	Plantae	Animalia	

Viruses


- Not classified. Why aren't they considered "living"?
- Made of protein coat (capsid) and nucleic acid
- 5-300 nm (nm is a billionth of a meter)
- No "cure". Some can be prevented by vaccination (NOT antibiotics!)
- Ex- influenza, cold, measles, mumps, HIV, hepatitis, chicken pox, herpes
 - WATCH THIS (2020)!

https://www.youtube.com/watch?v=NJLXdsO1GBI

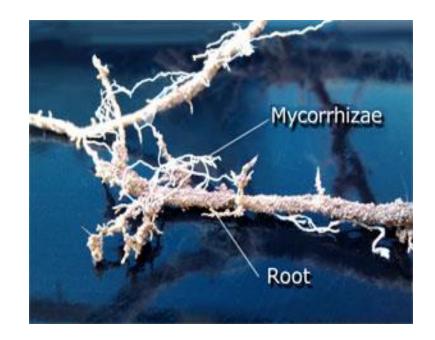

Viral Structure

Bacteriophage infecting E. coli

Viral Reproduction

- Intracellular parasites
- Virus attaches to host cell using their coat's proteins and the host's cell membrane receptors. Viral genome then enters host cell
- Viruses can be made of DNA or RNA----HIV is a retrovirus made of RNA (*Does not follow 'Central Dogma': instead RNA→DNA). So what's the big deal? No proof-reading enzyme (polymerase), so mutates OFTEN
- <u>Lytic cycle</u> (active-lysis) vs. <u>Lysogenic</u> (inactivevirus 'hides' in host's DNA as a prophage. Ex: both Herpes Simplex types I & II).
- *See next page

Important Symbiotic Relationships between Organisms of Different Kingdoms:



Lichens- (Know!)

- Look similar to some species of moss, but are not!
- Lichens are **symbiotic** associations between a **fungus** (often an ascomycete) and green algae or cyanobacteria
- The fungus usually give lichens "shelter" (optimal environment) which gives rise to their shape
- Alga provides the fungus with food
- Fungus provides a suitable physical environment for growth

Mycorrhizae ("fungus roots")- Know!

- Mutualistic associations of plant roots and fungi
- Almost all vascular plants have mycorrhizae

Review:

- Organisms whose cell walls contain peptidoglycan belong in the kingdom
 - Fungi.
 - Eubacteria.
 - Plantae.
 - Archaebacteria.

#2

- Multicellular organisms with no cell walls or chloroplasts are members of the kingdom
 - Animalia.
 - Protista.
 - Plantae.
 - Fungi.

#3

- Organisms that have cell walls containing cellulose are found in
 - Eubacteria and Plantae.
 - Fungi and Plantae.
 - Plantae and Protista.
 - Plantae only.

- Which of the following contain more than one kingdom?
 - only Archaea
 - only Bacteria
 - only Eukarya
 - both Eukarya and Archaea

#5

- Molecular analyses have given rise to a new taxonomic classification that currently includes
 - three domains.
 - seven kingdoms.
 - two domains.
 - five kingdoms.
 - *But not for long! *Someone tell me why....*