AP Biology Unit 3 Study Guide Chapters 8, 9 and 10

Chapter 8— Introduction to Metabolism

- 1. Explain the role of catabolic and anabolic pathways in cellular metabolism.
- 2. Distinguish between kinetic and potential energy.
- 3. Distinguish between an isolated and an open system. Explain why an organism is considered an open system.
- 4. Explain the first and second laws of thermodynamics in your own words.
- 5. Explain why highly ordered living organisms do not violate the second law of thermodynamics.
- 6. Distinguish between exergonic and endergonic reactions in terms of free energy change.
- 7. Describe the structure of ATP and identify the major class of macromolecules to which ATP belongs.
- 8. Explain how ATP performs cellular work.
- 9. Describe the function of enzymes in biological systems.
- 10. Explain why an investment of activation energy is necessary to initiate a spontaneous reaction.
- 11. Explain how enzyme structure determines enzyme specificity.
- 12. Explain the induced-fit model of enzyme function.
- 13. Describe the mechanisms by which enzymes lower activation energy.
- 14. Explain how substrate concentration affects the rate of an enzyme-catalyzed reaction.
- 15. Explain how temperature, pH, cofactors, and enzyme inhibitors can affect enzyme activity.
- 16. Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme.
- 17. Explain how the binding of oxygen to hemoglobin illustrates cooperativity.
- 18. Explain how feedback inhibition prevents a cell from wasting chemical resources.
- 19. Describe how localization of enzymes within a cell may help order metabolism.

Chapter 10—Photosynthesis

- 1. Distinguish between autotrophic and heterotrophic nutrition.
- 2. Describe the structure of a chloroplast, listing all membranes and compartments.
- 3. Write a summary equation for photosynthesis.
- 4. Explain van Niel's hypothesis (where O2 comes from) and evidence supports his hyphothesis.
- 5. In general terms, explain the role of redox reactions in photosynthesis.
- 6. Describe the two main stages of photosynthesis in general terms.
- 7. Explain how carotenoids protect the cell from damage by light.
- 8. List the wavelengths of light that are most effective for photosynthesis.
- 9. List the components of a photosystem and explain the function of each component.
- 10. Trace the movement of electrons in linear electron flow. Trace the movement of electrons in cyclic electron flow.
- 11. Explain the function(s) of linear electron flow. Explain the function(s) of cyclic electron flow.
- 12. Describe the similarities and differences in chemiosmosis between oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts.
- 13. State the function of each of the three phases of the Calvin cycle (carbon fixation, reduction, regeneration of RuBP)
- 14. Describe the role of ATP and NADPH in the Calvin cycle.

- 15. Describe what happens to rubisco when O₂ concentration is much higher than CO₂ concentration.
- 16. Describe the major consequences of photorespiration. Explain why it is thought to be an evolutionary relict.
- 17. Describe two important photosynthetic adaptations that minimize photorespiration.
- 18. Discuss the role of photosynthesis at an ecological level.

Chapter 9—Cellular Respiration

- 1. In general terms, distinguish between fermentation and cellular respiration.
- 2. Write the summary equation for cellular respiration.
- 3. Define oxidation and reduction.
- 4. Explain in general terms how redox reactions are involved in energy exchanges.
- 5. Describe the role of NAD[†] in cellular respiration.
- 6. In general terms, explain the role of the electron transport chain in cellular respiration.
- 7. Name the three stages of cellular respiration and state the region of the eukaryotic cell where each stage occurs.
- 8. Describe how the carbon skeleton of glucose changes as it proceeds through glycolysis.
- 9. Explain why ATP is required for the preparatory steps of glycolysis.
- 10. Identify where substrate-level phosphorylation and the reduction of NAD⁺ occur in glycolysis.
- 11. Describe where pyruvate is oxidized to acetyl CoA, what molecules are produced, and how this process links glycolysis to the citric acid cycle.
- 12. List the products of the citric acid cycle. Explain why it is called a cycle.
- 13. Describe the point at which glucose is completely oxidized during cellular respiration.
- 14. Distinguish between substrate level phosphorylation and oxidative phosphorylation.
- 15. In general terms, explain how the exergonic "slide" of electrons down the electron transport chain is coupled to the endergonic production of ATP by chemiosmosis.
- 16. Explain where and how the respiratory electron transport chain creates a proton gradient. Explain why this gradient is described as a proton motive force.
- 17. Summarize the net ATP yield from the oxidation of a glucose molecule.
- 18. Explain why it is not possible to state an exact number of ATP molecules generated by the oxidation of a molecule of glucose.
- 19. Compare the fate of pyruvate in alcohol fermentation and lactic acid fermentation.
- 20. Compare the processes of fermentation and cellular respiration.
- 21. Distinguish between obligate and facultative anaerobes.
- 22. Describe the evidence that suggests that glycolysis is an ancient metabolic pathway.
- 23. Describe how food molecules other than glucose can be oxidized to make ATP.
- 24. Explain how glycolysis and the citric acid cycle can contribute to anabolic pathways.
- 25. Explain how ATP production is controlled by the cell. Describe the role that the allosteric enzyme phosphofructokinase plays in this feedback control.